Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(19): 5041-5044, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773380

RESUMO

Damage thresholds and structures on a metal aluminum and an aluminum oxide crystal induced by the soft x-ray free electron laser irradiations were evaluated. Distinctive differences in damage thresholds and structures were observed for these materials. On the aluminum oxide crystal surface, in particular, a novel, to the best of our knowledge, surface processing, which we suggest defining as "peeling," was recognized. Surface structures formed by peeling had extremely shallow patterning of sub-nanometer depth. For the newly observed peeling process, we proposed a scission of chemical bond, i.e., binding energy model, in the crystal.

2.
Opt Express ; 31(16): 26383-26397, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710501

RESUMO

Here we demonstrate the results of investigating the damage threshold of a LiF crystal after irradiating it with a sequence of coherent femtosecond pulses using the European X-ray Free Electron Laser (EuXFEL). The laser fluxes on the crystal surface varied in the range ∼ 0.015-13 kJ/cm2 per pulse when irradiated with a sequence of 1-100 pulses (tpulse ∼ 20 fs, Eph = 9 keV). Analysis of the surface of the irradiated crystal using different reading systems allowed the damage areas and the topology of the craters formed to be accurately determined. It was found that the ablation threshold decreases with increasing number of X-ray pulses, while the depth of the formed craters increases non-linearly and reaches several hundred nanometers. The obtained results have been compared with data already available in the literature for nano- and picosecond pulses from lasers in the soft X-ray/VUV and optical ranges. A failure model of lithium fluoride is developed and verified with simulation of material damage under single-pulse irradiation. The obtained damage threshold is in reasonably good agreement with the experimentally measured one.

3.
Opt Express ; 30(24): 43491-43502, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523045

RESUMO

A counter-propagating laser-beam platform using a spherical plasma mirror was developed for the kilojoule-class petawatt LFEX laser. The temporal and spatial overlaps of the incoming and redirected beams were measured with an optical interferometer and an x-ray pinhole camera. The plasma mirror performance was evaluated by measuring fast electrons, ions, and neutrons generated in the counter-propagating laser interaction with a Cu-doped deuterated film on both sides. The reflectivity and peak intensity were estimated as ∼50% and ∼5 × 1018 W/cm2, respectively. The platform could enable studies of counter-streaming charged particles in high-energy-density plasmas for fundamental and inertial confinement fusion research.

4.
Opt Express ; 29(21): 33121-33133, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809130

RESUMO

Although laser irradiation with femtosecond pulses is known to generate crystallization and morphological changes, the contribution of optical parameters to material changes is still in discussion. Here, we compare two structures irradiated near Si-L2,3 edges by an extreme ultraviolet femtosecond pulse. Our result implies that, despite the femtosecond irradiation regime, these values of the optical attenuation length between the wavelengths of 10.3-nm and 13.5-nm differ by one order of magnitude. From the structural comparison, the original crystalline state was maintained upon irradiation at 13.5-nm, on the other hand, transition to an amorphous state occurred at 10.3-nm. The difference in optical attenuation length directly influence to the decision of material crystallization or morphological changes, even if the irradiation condition is under the femtosecond regime and same pulse duration. Our result reveals the contribution of optical attenuation length in ultrafast laser-induced structural change.

5.
Rev Sci Instrum ; 92(3): 033306, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820038

RESUMO

This paper reports on the absolute response of a Fuji BAS-TR image plate to relatively low-energy protons (<0.2 MeV) and carbon ions (<1 MeV) accelerated by a 10-TW-class compact high-intensity laser system. A Thomson parabola spectrometer was used to discriminate between different ion species while dispersing the ions according to their kinetic energy. Ion parabolic traces were recorded using an image plate detector overlaid with a slotted CR-39 solid-state detector. The obtained response function for the protons was reasonably extrapolated from previously reported higher-ion-energy response functions. Conversely, the obtained response function for carbon ions was one order of magnitude higher than the value extrapolated from previously reported higher-ion-energy response functions. In a previous study, it was determined that if the stopping range of carbon ions is comparable to or smaller than the grain size of the phosphor, then some ions will provide all their energy to the binder resin rather than the phosphor. As a result, it is believed that the imaging plate response will be reduced. Our results show good agreement with the empirical formula of Lelasseux et al., which does not consider photo-stimulated luminescence (PSL) reduction due to the urethane resin. It was shown that the PSL reduction due to the deactivation of the urethane resin is smaller than that previously predicted.

6.
J Orthop Res ; 39(11): 2474-2484, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33458845

RESUMO

There is no evaluation method currently available to assess intraoperative pedicle screw fixation (PSF) strength. In this study, we established a laser-based resonance frequency analysis (RFA) system with high-speed, noncontact, quantitative measurements of PSF. Clinical investigations in the future can assess surgical failure risk of implants. We investigated the characteristics of the laser RFA and compared them with the conventional methods. We inserted a pedicle screw in the vertebral pedicle of human cadaver or model bone, followed by screw pull-out, peak torque, implant stability quotient (ISQ) value obtained by the magnetic dental RFA system, and fixation force of laser RFA. We compared the outcomes using best-fit linear or logarithmic approximations. For the model bone study, the resonance frequency (RF) versus peak torque/pull-out force (POF) demonstrated strong correlations using logarithmic approximation (vs. peak torque: R = 0.931, p < .001, vs. POF: R = 0.931, p < .001). RF strongly correlated with the ISQ value using linear approximation (R = 0.981, p < .001). For the cadaveric vertebrae study, the correlation coefficients between RF and the peak torque/POF were significant regardless of approximation method (peak torque: logarithmic: R = 0.716 vs. linear: R = 0.811; p < .001) (POF: logarithmic: R = 0.644 vs. linear: R = 0.548; p < .05). Thus, the results of this study revealed a constant correlation between RFA and conventional methods as a measurement validation, predicting favorable support for intraoperative PSF. RFA has the potential to be a new index for evaluating the implant fixation force.


Assuntos
Parafusos Pediculares , Densidade Óssea , Cadáver , Humanos , Lasers , Análise de Frequência de Ressonância , Torque
7.
Rev Sci Instrum ; 91(8): 086103, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872925

RESUMO

We investigated the charge-separated spectra of highly charged suprathermal bismuth (Bi) ions from a dual laser-produced plasma soft x-ray source developed for soft x-ray microscopy. The charge distribution of these suprathermal ions emitted from a solid planar Bi target was measured by an electrostatic energy analyzer. The maximum ionic charge state was observed to be Z = 17 and to possess a maximum energy of about 200 keV. This evaluation provides important information essential for the development of debris mitigation schemes in a soft x-ray microscope.

8.
Rev Sci Instrum ; 91(5): 053305, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32486709

RESUMO

This article reports the development of a compact Thomson parabola spectrometer for laser-accelerated ions that can measure angular distribution with a high energy resolution and has a variable measurable energy range. The angular-resolved energy spectra for different ion species can be measured in a single shot, and the sampling angle can be selected from outside the vacuum region. The electric and magnetic fields are applied to the ion dispersion by using a permanent magnetic circuit and annulus sector-shaped electrodes with a wedge configuration. The compact magnetic circuit consists of permanent magnets, fixed yokes, and movable yokes. The magnetic flux is intentionally leaked to the movable yokes, allowing the magnetic field to be adjusted from 53 mT to 259 mT. The annulus sector-shaped electrodes with a wedge configuration provide better trace separation for high-energy ions, retain the lower-energy part of the ion signal, and subject ions passing through all pinholes to an equivalent Lorentz force. The magnetic and electric fields are designed for measuring protons and carbon ions with an energy range of 0.1-5 MeV. The spectrometer allows for the adjustment of the observable energy range afterward according to the parameters of the accelerated ion.

9.
Opt Lett ; 45(10): 2926-2929, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32412508

RESUMO

We demonstrate sub-micrometer processing of two kinds of thin films, polymethyl methacrylate (PMMA) and metal nano-particle resist, by focusing high-order harmonics of near-IR femtosecond laser pulses in the extreme ultraviolet (XUV) wavelength region (27.2-34.3 nm) on the thin film samples using an ellipsoidal focusing mirror. The ablation threshold fluences for the PMMA sample and the metal nano-particle resist per XUV pulse obtained by the accumulation of 200 XUV pulses were determined to be 0.42mJ/cm2 and 0.17mJ/cm2, respectively. The diameters (FWHM) of a hole created by the ablation on the PMMA film at the focus were 0.67 µm and 0.44 µm along the horizontal direction and the vertical direction, respectively. The fluence dependence of the Raman microscope spectra of the processed holes on the PMMA sample showed that the chemical modification, in which C=C double bonds are formed associated with the scission of the PMMA polymer chains, is achieved by the irradiation of the XUV pulses.

10.
Appl Opt ; 59(12): 3692-3698, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32400492

RESUMO

We have developed a soft x-ray laser (SXRL) beamline equipped with an intensity monitor dedicated to ablation study such as surface processing and damage formation. The SXRL beam having a wavelength of 13.9 nm, pulse width of 7 ps, and pulse energy of around 200 nJ is generated from Ag plasma mediums using an oscillator-amplifier configuration. The SXRL beam is focused onto the sample surface by the Mo/Si multilayer coated spherical mirror. To get the correct irradiation energy/fluence, an intensity monitor composed of a Mo/Si multilayer beam splitter and an x-ray charge-coupled device camera has been installed in the beamline. The Mo/Si multilayer beam splitter has a large polarization dependence in the reflectivity around the incident angle of 45°. However, by evaluating the relationship between reflectivity and transmittance of the beam splitter appropriately, the irradiation energy onto the sample surface can be derived from the energy acquired by the intensity monitor. This SXRL beamline is available to not only the ablation phenomena but also the performance evaluation of soft x-ray optics and resists.

11.
Opt Lett ; 45(8): 2435-2438, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287252

RESUMO

Laser-induced damage thresholds (LIDTs) of silica glasses obtained by the femtosecond soft x-ray free-electron laser (SXFEL, 13.5 nm, 70 fs) and the picosecond soft x-ray laser (SXRL, 13.9 nm, 7 ps) are evaluated. The volume of the hydroxyl group in the silica glasses influenced its LIDTs. The LIDTs obtained in this research by the femtosecond SXFEL and the picosecond SXRL were nearly identical, but were different from that by the nanosecond soft x-ray pulse. The photoionization processes of silica glass in context of the laser-induced damage mechanism (LIDM) are also discussed. In the ultra-short soft x-ray pulse irradiation regime, the LIDM can be speculated to include the spallation process with a scission of bondings.

12.
Sensors (Basel) ; 19(22)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717400

RESUMO

Artificial joint acetabular cup stability is essential for successful total hip arthroplasty. However, a quantitative evaluation approach for clinical use is lacking. We developed a resonance frequency analysis (RFA) system involving a laser system that is fully contactless. This study aimed to investigate the usefulness of laser RFA for evaluating acetabular cup stability. First, the finite element method was performed to determine the vibration mode for analysis. Second, the acetabular cup was press-fitted into a reamed polyurethane cavity that replicated the human acetabular roof. The implanted acetabular cup was vibrated with pulse laser irradiation and the induced vibration was detected with a laser Doppler vibrometer. The time domain signal from the vibrometer was analyzed by fast Fourier transform to obtain the vibration frequency spectrum. After laser RFA, the pull-down force of the acetabular cup was measured as conventional implant fixation strength. The frequency of the first highest amplitude between 2 kHz and 6 kHz was considered as the resonance peak frequency, and its relationship with the pull-down force was assessed. The peak frequency could predict the pull-down force (R2 = 0.859, p < 0.000). Our findings suggest that laser RFA might be useful to measure acetabular cup stability during surgery.


Assuntos
Artroplastia de Quadril/métodos , Acetábulo , Análise de Elementos Finitos , Prótese de Quadril , Humanos , Pressão , Desenho de Prótese , Vibração
13.
Opt Lett ; 44(6): 1439-1442, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874670

RESUMO

To generate bright water-window (WW) soft x rays (2.3-4.4 nm), gold slab targets were irradiated with laser pulses (1064 nm, 7 ns, 1 J). Emission spectroscopy showed that the introduction of low-pressure nitrogen enhanced the soft x-ray yield emitted from the laser-produced Au plasma. The intensity of the WW x-ray transported in a 400-Pa N2 atmosphere from the laser-produced plasma increased by 3.8 times over that in vacuum. Considering a strong x-ray absorption, the x-ray yield emitted directly from the Au plasma in the N2 gas was evaluated to be 13 times higher than that in vacuum. Although similar measurements were made for various gases, only N2 gas causes an increase in a soft x-ray yield. The processes leading to this enhancement mechanism were revealed by using hydrodynamic simulation and atomic structure codes.

14.
Opt Express ; 26(21): 27748-27756, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469835

RESUMO

We demonstrate intense emission in the water-window soft x-ray spectral region by controlling the spectral behavior through changing the balance between emissivity and self-absorption in an expanding plasma. The number of photons obtained from a dual laser irradiated target with a 150-ps pre-pulse was maximized at 3.8 × 1014 photons/sr in λ = 2.34 - 4.38 nm at a pulse separation time of 7 - 10 ns. Enhancement of the number of photons is attributed to efficient coupling with the main laser pulse while maintaining a tiny source size.

15.
Opt Lett ; 43(15): 3750-3753, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067671

RESUMO

The effect of optical thickness in a bismuth water-window soft x-ray source is considered by comparing the emission from laser-produced plasmas of a 7.5% atomic density foam target and a solid-density target. The number of photons recorded in the 4 nm region was comparable for both targets at a plasma-initiating laser pulse duration of 6 ns. From experiments at different pulse durations of 150 ps and 6 ns, self-absorption (opacity) effects were found to be relatively small for bismuth plasmas as compared to those of tin, based on the same emission mechanism and which are used in 13.5 nm sources for extreme ultraviolet lithography.

17.
Rev Sci Instrum ; 87(12): 123106, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28040919

RESUMO

A flat-field grazing incidence spectrometer operating on the spectral region from 1 to 10 nm was built for research on physics of high temperature and high energy density plasmas. It consists of a flat-field grating with 2400 lines/mm as a dispersing element and an x-ray charged coupled device (CCD) camera as the detector. The diffraction efficiency of the grating and the sensitivity of the CCD camera were directly measured by use of synchrotron radiation at the BL-11D beamline of the Photon Factory (PF). The influence of contamination to the spectrometer also was characterized. This result enables us to evaluate the absolute number of photons in a wide range wavelength between 1 and 10 nm within an acquisition. We obtained absolutely calibrated spectra from highly charged ion plasmas of Gd, from which a maximum energy conversion efficiency of 0.26% was observed at a Nd:YAG laser intensity of 3 × 1012 W/cm2.

18.
Sci Rep ; 5: 17713, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26634431

RESUMO

Here, we report, that by means of direct irradiation of lithium fluoride a (LiF) crystal, in situ 3D visualization of the SACLA XFEL focused beam profile along the propagation direction is realized, including propagation inside photoluminescence solid matter. High sensitivity and large dynamic range of the LiF crystal detector allowed measurements of the intensity distribution of the beam at distances far from the best focus as well as near the best focus and evaluation of XFEL source size and beam quality factor M(2). Our measurements also support the theoretical prediction that for X-ray photons with energies ~10 keV the radius of the generated photoelectron cloud within the LiF crystal reaches about 600 nm before thermalization. The proposed method has a spatial resolution ~0.4-2.0 µm for photons with energies 6-14 keV and potentially could be used in a single shot mode for optimization of different focusing systems developed at XFEL and synchrotron facilities.

19.
J Radiat Res ; 56(4): 633-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25862698

RESUMO

While it has been expected that X-ray laser will be widely applied to biomedical studies, this has not been achieved to date and its biological effects such as DNA damage have not been evaluated. As a first step for its biological application, we developed a culture cell irradiation system, particularly designed for a plasma-driven soft X-ray laser pulse, to investigate whether the soft X-ray laser is able to induce DNA double strand breaks (DSBs) in living cells or not. The human adenocarcimona cell line A549 was irradiated with the soft X-ray laser at a photon energy of 89 eV and the repair focus formation of the DSBs was assessed by immunofluorescence staining with antiphosphorylated DNA-PKcs (p-DNA-PKcs), ATM (p-ATM) and γ-H2AX antibody. The p-DNA-PKcs, ATM, and γ-H2AX foci were clearly identified after soft X-ray laser irradiation. Furthermore, the increase in the X-ray laser shot number, even from a single shot, results in the increase in p-DNA-PKcs foci. These results are the first evidence that the 89 eV soft X-ray laser is able to induce DSB in living cells. Our study demonstrated that this irradiation system is a useful tool for investigating the radiobiological effect of soft X-ray laser.


Assuntos
Dano ao DNA/genética , DNA de Neoplasias/genética , DNA de Neoplasias/efeitos da radiação , Lasers , Neoplasias Pulmonares/genética , Raios X , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Humanos , Gases em Plasma , Doses de Radiação
20.
Nat Commun ; 4: 1936, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23733009

RESUMO

The advent of X-ray lasers allowed the realization of compact coherent soft X-ray sources, thus opening the way to a wide range of applications. Here we report the observation of unexpected concentric rings in the far-field beam profile at the output of a two-stage plasma-based X-ray laser, which can be considered as the first manifestation of a mirage phenomenon in X-rays. We have developed a method of solving the Maxwell-Bloch equations for this problem, and find that the experimentally observed phenomenon is due to the emergence of X-ray mirages in the plasma amplifier, appearing as phase-matched coherent virtual point sources. The obtained results bring a new insight into the physical nature of amplification of X-ray radiation in laser-induced plasma amplifiers and open additional opportunities for X-ray plasma diagnostics and extreme ultraviolet lithography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...